三、常用知识
在排列组合中,往往会有一些基本的题型,那么接下来我们就一起看看,三种特别重要的方法。
1、优先法:有特殊要求的元素优先考虑。
例2:某大学考场在 8 个时间段内共安排了 10 场考试,除了中间某个时间段(非头尾 时间段)不安排考试外,其他每个时间段安排 1 场或 2 场考试。那么,该考场有多少种 考试安排方式(不考虑考试科目的不同)?
A.210 B.270 C.280 D.300
【中公解析】第一步,要求中间某个时间段不安排考试,说明要从6个时间段中选一个共6,第二步,安排一场或者两场,剩下的7个时间段最少要有一场,还剩3场,所以从剩下的7个时间段,选3个,就可以,因为不考虑科目,为组合,共有35种,第三步,分步用乘法6*35=210,答案A。
2、捆绑法:相邻问题捆绑法(将相邻元素看成大元素,再考虑内部情况)
例3:四对情侣排成一队买演唱会门票,已知每对情侣必须排在一起,问共有多少种不同的排队顺序?
A.24 种 B.96 种 C.384 种 D.40320 种
【中公解析】每对在一起,说明要捆绑,将这4对,看成4个大元素,排列共有4*3*2*1=24,在考虑内部情况没对都有两种,共24*2*2*2*2=384,答案C。
3,插空法:不相邻问题插口法(先将不相邻元素不看,再将不相邻元素插入空中)
例4:某市至旱季水源不足,自来水公司计划在下周七天内选择两天停止供水,若要求 停水的两天不相连,则自来水公司共有( )种停水方案。
A.21 B.19 C.15 D.6
【中公解析】要求不相邻,要使停水的两天不相连,就相当于把停水的 2 天插入不停水 的 5 天所形成的 6 个空位中,有 6个空中选2个(无序) 共15 种停水方案。答案:C。
以上就是排列组合的基本问题,希望能给大家带来一定的帮助。
推荐:
1 2
声明:本站点发布的来源标注为“中公教育”的文章,版权均属中公教育所有,未经允许不得转载。
免责声明:本站所提供试题均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。