接下来我们看能否利用这个模型和公式来套用其他的题目。
例2:一个水库在年降水量不变的情况下,能够维持全市12万人20年的用水量。在该市新迁入3万人之后,该水库只够维持15年的用水量。市政府号召节约用水,希望能将水库的使用寿命提高到30年。那么该市市民平均需要节约多少比例的水才能实现政府制定的目标?
A.2/5 B.2/7 C.1/3 D.1/4
中公解析:由题干可知,水库内原有水量是原始量,降水是对原始量的增加,居民用水是对原始量的减少,符合牛吃草问题的基本模型。年降水量相当于草生长速率,人数就相当于牛头数。则可设年降水量为x,每万人每年原用水量为1,节水后每万人每年用水量为y,则可列出等式(12-x)×20=(12+3-x)×15=〔15y-x〕×30=初始水库中水量,解得y=3/5,则节水比例为2/5,所以A为正确选项。
例3.某河段中的沉积河沙可供80人连续开采6个月或60人连续开采10个月。如果要保证该河段河沙不被开采枯竭,问最多可供多少人进行连续不间断的开采?(假定该河段河沙沉积的速度相对稳定)
A.25 B.30 C.35 D.40
中公解析:由题干可知,原有河沙为原始量,沉积是对原始量的增加,开采是对原始量的减少,符合牛吃草问题的基本模型。沉积速度相当于草生长速度,开采人数相当于牛的头数,直接利用公式:(80-x)×6=(60-x)×10,x=30,所以答案选择B项。
在此建议各位考生,遇到牛吃草,一定不要放过,只需判断题干代入公式,就可以轻轻松松简简单单取得理想的分数。
更多2018国家公务员考试相关信息请查看》》 黑龙江公务员考试网
1 2
声明:本站点发布的来源标注为“中公教育”的文章,版权均属中公教育所有,未经允许不得转载。
免责声明:本站所提供试题均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。