接下来让我们通过一道例题来体会一下当行程遇上牛和草又会发生哪些神奇的变化。
例1:牧场上有一片青草,每天都匀速生长。这片青草供给10头牛吃,可以吃12天;或者供给15头牛吃,可以吃6天。如果供给20头牛吃,可以吃多少天?
中公解析:此题就是典型的牛吃草问题,在题目中,原有一片草场就是一个原始量,草匀速生长对应的原始量的增加,牛吃草对应的原始量的减少,我们用线段AB来表示草场,用一幅图来分析一下牛吃草的规律。
假设牧场原有草量是M(即AB段长),牛从最左端A处开始向右吃草,草从B段开始向右生长,经过T天后,在C处草被吃完了。相当于草从B点到C点,同时牛从A点到C点,很明显与行程问题中的追及问题模型是一样的。因此我们可以用追及公式来解决牛吃草问题。假设每头牛每天吃1份草,N头牛每天就吃N份草;假设草每天生长X份,则我们可以得出牛吃草的追及公式:M=(N - X)×T。然后将题干中的数据代入可得:(10 - X)×12=(15 - X)×6=(20 - X)×T,解得X为5,T为4。即对于20头牛,4天就吃完了牧场上的草。
从这个问题我们就可以总结牛吃草问题的一个重要模型,即有一个原始量,对该原始量进行一增一减两个操作,这样的问题就可以看作牛吃草问题,解题方法就是利用追击公式,列出(牛速-草速)×时间= 原始量,代入数据求解即可。
1 2
声明:本站点发布的来源标注为“中公教育”的文章,版权均属中公教育所有,未经允许不得转载。
免责声明:本站所提供试题均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。